Monday, 6 May 2013

THE HAPTIC SPACE MOUSE IEEE SEMINAR REPORTS AND PPT


ABSTRACT

  We describe the Haptic Space Mouse, an input device based on the SpaceMouse with 2 DOF translational feedback in contrast to the rotational feedback often found in force-feedback joysticks. We use solenoids as motors in our implementation, they facilitate frictionless operation and add little inertia to the Spacemouse.
     
          The force-feedback controller is an Atmel ATmega32 microcontroller, which is programmed to decode the device output, thus enabling us to drive the solenoids in a closed loop. A simple host-to-device protocol is developed to specify the haptic forces.

Friday, 12 April 2013

Biometrics Identity Verification in a Networked World Samir Nanavati, Michael Thieme ,Raj Nanavati Full text download


                                                   


                                                 Host: GOOGLE
                                                 SIZE: 2MB

Thursday, 28 March 2013

C program for Bubble coming out of a bottle

Program: Bubble coming out of a bottle.
Language : C

Computer Graphics
#include<stdio.h>
#include<math.h>
#include<conio.h>
#include<graphics.h>
void main()
{
int i;
int gd=DETECT,gmode;
initgraph(&gd,&gmode,"");
for(i=0;i<300;i+=5)
{
    ellipse(300,400,0,360,50,10);
    line(250,400,250,275);
    line(350,400,350,275);
    ellipse(300,200,0,360,20,5);
    line(280,240,280,200);

C program for Analog Clock

#include<graphics.h>
#include<conio.h>
#include<math.h>
#include<dos.h>
void main()
{
int gd=DETECT,gm;
int x=320,y=240,r=200,i,h,m,s,thetamin,thetasec;
struct  time t;
char n[12][3]={"3","2","1","12","11","10","9","8","7","6","5","4"};
initgraph(&gd,&gm,"c:\bin\tc");//put the directory which containsegavga.bgi
circle(x,y,220);
setcolor(4);
settextstyle(4,0,5);
for(i=0;i<12;i++)
{
if(i!=3)

Sunday, 24 March 2013

security in computing full notes

Download Mg university computer science security in computing full notes Free



















  • Download Module 1
  • Download Module 2
  • Download Module 3


  • Download Module4
  • simple 2D rotation for a triangle using C

    #include<stdio.h>
    #include<conio.h>
    #include<graphics.h>
    #include<math.h>
    #include<stdlib.h>
    void draw (int x1,int y1,int x2,int y2,int x3,int y3);
    //int x1,y1,x,y,sx,i,j;
    void main()
    {
    int x1,y1,x2,y2,x3,y3,x,y;
    int gdriver=DETECT,gmode,errorcode;
    initgraph(&gdriver,&gmode,"c:\tc\bin\bgi");
    printf("\n Enter the co ordinates");
    scanf("%d%d",&x1,&y1);
    scanf("%d%d",&x2,&y2);
    scanf("%d%d",&x3,&y3);
    line (x1,y1,x2,y2);
    line(x2,y2,x3,y3);
    line(x3,y3,x1,y1);
    draw(x1,y1,x2,y2,x3,y3);
    getch();
    }
    void draw(int x1,int y1,int x2,int y2,int x3,int y3)
    {
    int x,y,p,q,d,a1,b1 ,a2,b2,a3,b3;
    float a;
    printf("\n Enter the rotation point");
    scanf("%d%d",&x,&y);
    printf("\n Enter the rotation angle");
    scanf("%d",&d);
    p=x;
    q=y;
    a=((d*3.14)/180);
    a1=p+(x1-p)*cos(a)-(y1-q)*sin(a);
    b1=p+(y1-p)*sin(a)+(x1-q)*cos(a);
    a2=p+(x2-p)*cos(a)-(y2-q)*sin(a);
    b2=p+(y2-p)*sin(a)+(x2-q)*cos(a);
    a3=p+(x3-p)*cos(a)-(y3-q)*sin(a);
    b3=p+(y3-p)*sin(a)+(x3-q)*cos(a);
    line(a1,b1,a2,b2);
    line(a2,b2,a3,b3);
    line(a3,b3,a1,b1);
    }

    Simple 3D translation for a Rectangle in C

    #include<stdio.h>
    #include<conio.h>
    #include<graphics.h>
    #include<ctype.h>
    #include<stdlib.h>
    #define CLIP_ON 1
    int rect(int x1,int x2,int y1,int y2);
    int tran(int tx,int ty) ;
    int x1,y1,x2,y2,tx,ty;
    void main()
    {
    int gdriver=DETECT,gmode,errorcode;
    initgraph(&gdriver,&gmode,"c:\tc\bin\bgi");
    clrscr();
    printf("\n Enter points");
    scanf("%d%d%d",&x1,&y1,&x2,&y2);
    rect(x1,y1,x2,y2);
    printf("\n Enter the value for tx,ty");
    scanf("%d%d",&tx,&ty);
    tran(tx,ty);
    getch();
    }

    int rect(x1,y1,x2,y2)
    {
    rectangle(x1,y1,x2,y2);
    bar3d(x1,y1,x2,y2,20,1);
    }
    int tran(tx,ty)
    {
    rectangle(x1+tx,y1+ty,x2+tx,y2+ty);
    bar3d(x1+tx,y1+ty,x2+tx,y2+ty,20,1);
    }